ISP`s IT Аутсорсинг
Быстрый переход: Главная блога Главная сайта Форум
Если Вы чего то недопоняли или не нашли - задайте
вопрос на нашем форуме и мы попробуем Вам помочь.
Subnets.ru Регистрация IP и Автономных систем mega-net.ru

Настраивая OSPF необходимо знать теорию его работы. Настройку небольшой схемы, в которой применим OSPF, я рассмотрю в этой статье, а сейчас вкратце пробежимся по теории.

OSPF (Open Shortest Path First) — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути Алгоритм Дейкстры (Dijkstra’s algorithm).

Последняя версия протокола представлена в RFC 2328. Протокол OSPF представляет собой протокол внутреннего шлюза (Interior Gateway Protocol — IGP), распространяет информацию о доступных маршрутах между маршрутизаторами одной автономной системы.

OSPF предлагает решение следующих задач:

  • Увеличение скорости сходимости;
  • Поддержка сетевых масок переменной длины (VLSM);
  • Достижимость сети;
  • Использование пропускной способности;
  • Метод выбора пути.

Теория

Терминология протокола OSPF

  • Объявление о состоянии канала (link-state advertisement, LSA) — объявление описывает все каналы маршрутизатора, все интерфейсы и состояние каналов.
  • Состояние канала (link state) — состояние канала между двумя маршрутизаторами; обновления происходят при помощи пакетов LSA.
  • Метрика (metric) — условный показатель «стоимости» пересылки данных по каналу;
  • Автономная система (autonomous system) — группа маршрутизаторов, обменивающаяся маршрутизирующей информацией с помощью одного протокола маршрутизации.
  • Зона (area) — совокупность сетей и маршрутизаторов, имеющих один и тот же идентификатор зоны.
  • Соседи (neighbours) — два маршрутизатора, имеющие интерфейсы в общей сети.
  • Состояние соседства (adjacency) — взаимосвязь между определенными соседними маршрутизаторами установленная с целью обмена информацией маршрутизации.
  • Hello-пакеты (hello packets) — используются для поддержания соседских отношений.
  • База данных соседей (neighbours database) — список всех соседей.
  • База данных состояния каналов (link state database, LSDB) — список всех записей о состоянии каналов. Встречается также термин топологическая база данных (topological database), употребляется как синоним базы данных состояния каналов.
  • Идентификатор маршрутизатора (router ID, RID) — уникальное 32-битовое число, которое уникально идентифицирует маршрутизатор в пределах одной автономной системы.
  • Выделенный маршрутизатор (designated router, DR) — управляет процессом рассылки LSA в сети. Каждый маршрутизатор сети устанавливает отношения соседства с DR. Информация об изменениях в сети отправляется DR, маршрутизатором обнаружившим это изменение, а DR отвечает за то, чтобы эта информация была отправлена остальным маршрутизаторам сети.Недостатком в схеме работы с DR маршрутизатором является то, что при выходе его из строя должен быть выбран новый DR. Новые отношения соседства должны быть сформированы и, пока базы данных маршрутизаторов не синхронизируются с базой данных нового DR, сеть будет недоступна для пересылки пакетов. Для устранения этого недостатка выбирается BDR.
  • Резервный выделенный маршрутизатор (backup designated router, BDR). Каждый маршрутизатор сети устанавливает отношения соседства не только с DR, но и BDR. DR и BDR также устанавливают отношения соседства и между собой. При выходе из строя DR, BDR становится DR и выполняет все его функции. Так как маршрутизаторы сети установили отношения соседства с BDR, то время недоступности сети минимизируется.

Краткое описание работы протокола

  1. Маршрутизаторы обмениваются hello-пакетами через все интерфейсы на которых активирован OSPF. Маршрутизаторы разделяющие общий канал передачи данных становятся соседями, когда они приходят к договоренности об определенных параметрах указанных в их hello-пакетах.
  2. На следующем этапе работы протокола маршрутизаторы будут пытаться перейти в состояние соседства со своими соседями. Переход в состояние соседства определяется типом маршрутизаторов обменивающихся hello-пакетами и типом сети по которой передаются hello-пакеты. OSPF определяет несколько типов сетей и несколько типов маршрутизаторов. Пара маршрутизаторов, находящихся в состоянии соседства синхронизирует между собой базу данных состояния каналов.
  3. Каждый маршрутизатор посылает объявление о состоянии канала маршрутизаторам с которыми он находится в состоянии соседства.
  4. Каждый маршрутизатор получивший объявление от соседа записывает информацию передаваемую в нем в базу данных состояния каналов маршрутизатора и рассылает копию объявления всем другим своим соседям.
  5. Рассылая объявления через зону, все маршрутизаторы строят идентичную базу данных состояния каналов маршрутизатора.
  6. Когда база данных построена, каждый маршрутизатор использует алгоритм кратчайший путь первым для вычисления графа без петель, который будет описывать кратчайший путь к каждому известному пункту назначения с собой в качестве корня. Этот граф это дерево кратчайшего пути.
  7. Каждый маршрутизатор строит таблицу маршрутизации из своего дерева кратчайшего пути.

В сетях со множественным доступом отношения соседства должны быть установлены между всеми маршрутизаторами. Это приводит к тому, что рассылается большое количество копий LSA. Если, к примеру, количество маршрутизаторов в сети со множественным доступом равно n, то будет установлено n(n-1)/2 отношений соседства. Каждый маршрутизатор будет рассылать n-1 LSA своим соседям, плюс одно LSA для сети, в результате сеть сгенерирует LSA.

Для предотвращения проблемы рассылки копий LSA в сетях со множественным доступом выбираются DR и BDR.

Маршрутизатор, выбранный DR или BDR в одной присоединенной к нему сети со множественным доступом, может не быть DR (BDR) в другой присоединенной сети. Роль DR (BDR) является свойством интерфейса, а не свойством всего маршрутизатора.

Таймеры протокола

  • HelloInterval — Интервал времени в секундах по истечению которого маршрутизатор отправляет следующий hello-пакет с интерфейса. Для широковещательных сетей и сетей точка-точка значение по умолчанию, как правило, 10 секунд. Для нешироковещательных сетей со множественным доступом значение по умолчанию 30 секунд.
  • RouterDeadInterval — Интервал времени в секундах по истечению которого сосед будет считаться «мертвым». Этот интервал должен быть кратным значению HelloInterval. Как правило, RouterDeadInterval равен 4 интервалам отправки hello-пакетов, то есть 40 секунд.
  • Wait Timer — Интервал времени в секундах по истечению которого маршрутизатор выберет DR в сети. Его значение равно значению интервала RouterDeadInterval.
  • RxmtInterval — Интервал времени в секундах по истечению которого маршрутизатор повторно отправит пакет на который не получил подтверждения о получении (например, Database Description пакет или Link State Request пакеты). Это интервал называется также Retransmit interval. Значение интервала 5 секунд.

Типы маршрутизаторов

Внутренний маршрутизатор (internal router) — маршрутизатор все интерфейсы которого принадлежат одной зоне. У таких маршрутизаторов только одна база данных состояния каналов.

Пограничный маршрутизатор (area border router, ABR) — соединяет одну или больше зон с магистральной зоной и выполняет функции шлюза для межзонального трафика. У пограничного маршрутизатора всегда хотя бы один интерфейс принадлежит магистральной зоне. Для каждой присоединенной зоны маршрутизатор поддерживает отдельную базу данных состояния каналов.

Магистральный маршрутизатор (backbone router) — маршрутизатор у которого всегда хотя бы один интерфейс принадлежит магистральной зоне. Определение похоже на пограничный маршрутизатор, однако магистральный маршрутизатор не всегда является пограничным. Внутренний маршрутизатор интерфейсы которого принадлежат нулевой зоне, также является магистральным.

Пограничный маршрутизатор автономной системы (AS boundary router, ASBR) — обменивается информацией с маршрутизаторами принадлежащими другим автономным системам. Пограничный маршрутизатор автономной системы может находиться в любом месте автономной системы и быть внутренним, пограничным или магистральным маршрутизатором.

Типы объявлений о состоянии канала (LSA)

Type 1 LSA — Router LSA — объявление о состоянии каналов маршрутизатора. Эти LSA распространяются всеми маршрутизаторами. В LSA содержится описание всех каналов маршрутизатора и стоимость (cost) каждого канала. Распространяются только в пределах одной зоны.

Type 2 LSA — Network LSA — объявление о состоянии каналов сети. Распространяется DR в сетях со множественным доступом. В LSA содержится описание всех маршрутизаторов присоединенных к сети, включая DR. Распространяются только в пределах одной зоны.

Type 3 LSA — Network Summary LSA — суммарное объявление о состоянии каналов сети. Объявление распространяется пограничными маршрутизаторами. Объявление описывает только маршруты к сетям вне зоны и не описывает маршруты внутри автономной системы. Пограничный маршрутизатор отправляет отдельное объявление для каждой известной ему сети.

Когда маршрутизатор получает Network Summary LSA от пограничного маршрутизатора он не запускает алгоритм вычисления кратчайшего пути. Маршрутизатор просто добавляет к стоимости маршрута указанного в LSA стоимость маршрута к пограничному маршрутизатору. Затем маршрут к сети через пограничный маршрутизатор помещается в таблицу маршрутизации.

Type 4 LSA — ASBR Summary LSA — суммарное объявление о состоянии каналов пограничного маршрутизатора автономной системы. Объявление распространяется пограничными маршрутизаторами. ASBR Summary LSA отличается от Network Summary LSA тем, что распространяется информация не о сети, а о пограничном маршрутизаторе автономной системы.

Type 5 LSA — AS External LSA — объявления о состоянии внешних каналов автономной системы. Объявление распространяется пограничным маршрутизатором автономной системы в пределах всей автономной системы. Объявление описывает маршруты внешние для автономной системы OSPF или маршруты по умолчанию (default route) внешние для автономной системы OSPF.

Type 7 LSA — AS External LSA for NSSA — объявления о состоянии внешних каналов автономной системы в NSSA зоне. Это объявление может передаваться только в NSSA зоне. На границе зоны пограничный маршрутизатор преобразует type 7 LSA в type 5 LSA.

Типы зон

При разделении автономной системы на зоны, маршрутизаторам принадлежащим к одной зоне не известна информация о детальной топологии других зон.

Разделение на зоны позволяет:

  • Снизить нагрузку на ЦПУ маршрутизаторов за счет уменьшения количества перерасчетов по алгоритму SPF
  • Уменьшить размер таблиц маршрутизации
  • Уменьшить количество пакетов обновлений состояния канала

Каждой зоне присваивается идентификатор зоны (area ID). Идентификатор может быть указан в десятичном формате или в формате записи IP-адреса. Однако идентификаторы зон не являются IP-адресами и могут совпадать с любым назначенным IP-адресом.

Магистральная зона (backbone area)

Магистральная зона (известная также как нулевая зона (Area 0) или зона 0.0.0.0) формирует ядро сети OSPF. Все остальные зоны ДОЛЖНЫ быть соединены с ней, и межзональная маршрутизация происходит через маршрутизатор соединенный с магистральной зоной. Магистральная зона ответственна за распространение маршрутизирующей информации между немагистральными зонами. Магистральная зона должна быть смежной с другими зонами, но она не обязательно должна быть физически смежной; соединение с магистральной зоной может быть установлено и с помощью виртуальных каналов (virtual links).

Состояния OSPF соседа

Во время формирования соседских отношений OSPF роутеры (маршрутизаторы) проходят следущие состояния: Down, Attempt, Init, 2-Way, Exstart, Exchange, Loading, и Full.
Down state

Первое состояние OSPF соседа. В данном состоянии обмена Hello пакетами еще не производилось или соседские отношения развалились (состояние Full), по причине истечения RouterDeadInterval. Hello-пакеты в данном состоянии принимаются.

Attempt state

Это состояние проходят вручную прописанные в конфигурацию роутера OSPF работающего в NBMA среде (Nonbroadcast Multiple Access Network (NBMA) — среда не поддерживающая распространение multicast и broadcast трафика). В этом состоянии роутер посылает юникаст (unicast) hello-пакеты со своего unicast адреса на unicast адрес соседа.

Init state

Состояние инициализации, когда роутер получил hello пакет от соседа на один из интерфейсов OSPF, но RID получателя ещё небыл включен (вписан) в hello-пакет. Роутер вставляет RID соседа, от которого был получен hello-пакет, в свой hello-пакет как подтверждение того, что он был получен.

2Way state

В данном состоянии между роутерами установлен двунаправленный обмен, т.к. при разборе пришедшего hello-пакета содержится RID этого роутера, т.е. оба роутера получили hello-пакеты друг от друга. Именно в конце установки этого состояния в broadcast среде проиходят выборы DR и BDR если они ещё отсутствуют в Area в которой находятся интерфейсы роутера на которые были получены hello-пакеты.

В NBMA среде выборов DR и BDR не производится.

Exstart state

После выборов DR и BDR, между роутерами и DR, BDR начинается процесс обмена пакетами DBD (Database Descriptor) c информацией о состоянии каналов. В этом состоянии, роутеры и их DR и BDR устанавливают отношения master-slave . Роутер с самым большим Router ID (RID) становиться master и начинает обмен.

Exchange state

В этом состояни, OSPF роутеры обмениваются пакетами дескрипторами базы данных (DBD). Дескрипторы базы данных содержат только заголовки LSA, которые описывают содержимое всей базы данных о состоянии каналов. Каждый DBD пакет имеет номер, который увеличивается только master роутером и обязатесльно подтверждается slave`вом. Роутеры посылают link-state request пакеты и link-state update пакеты, они содержат всю LSA. Содержимое полученного DPD сравнивается с информацией содержащейся в link-state database роутера, идет поиск, имеются ли новые сведения о состоянии каналов доступных соседу.

Loading state

Происходит непосредственно обмен информацией о состоянии канала. Основываясь на информации полученной через DBD, роутеры посылают link-state request пакеты о состоянии канала. Затем сосед предоставляет запрошенную link-state информацию в link-state update пакетах. Во время adjacency, если роутер принял устаревшую или отсутствующую LSA, он запрашивает эту LSA, посылая link-state request пакет. Все link-state update пакеты нуждаются в обязательном подтвеждении (acknowledgment).

Full state

В этом состоянии соседские отношения полностью установлены. Роутеры обменялись LSA и база данных, на роутерах, полностью синхронизирована. Состояние Full является нормальным состоянием для OSPF роутера.

Роутер может «застрять» в каком-то из состояний, это указывает на проблему в формировании связности (adjacency). Исключением является состояние 2Way, которое является обычным для соседей в broadcast среде. Состояние Full устанавливается только с DR и BDR. С остальными соседями в этой среде будет установлено состояние 2WAY/DROTHER.

В broadcast среде, все OSPF роутеры общаются через multicast адрес 224.0.0.5, но DR и BDR, для общения между собой, используют multicast адрес 224.0.0.6. Благодаря тому, что в broadcast среде работает multicast, определение и нахождение OSPF соседей происходит автоматически.

Формат пакетов

О форматах пакетов OSPF подробно написано тут.

В завершении

В статье используются материалы сайтов:

Полезная литература: Структура и реализация сетей на основе протокола OSPF.

Похожие статьи:

    Не найдено

Прочитано: 43 188 раз(а)
Ничего не понялТак себе...Не плохоДовольно интересноОтлично ! То что нужно ! (голосов: 6, среднее: 5,00 из 5)
Загрузка...
Отправить на почту Отправить на почту

Добавить комментарий

Вам следует авторизоваться для размещения комментария.